Перевод: со всех языков на английский

с английского на все языки

(exploit commercially)

  • 1 vermarkten

    v/t (put on the) market; fig. capitalize on, exploit (commercially); viele Bauern vermarkten ihre Produkte selbst many farmers market their goods themselves (Am. market their own produce)
    * * *
    to merchandise; to market
    * * *
    ver|mạrk|ten [fɛɐ'marktn] ptp verma\#rktet
    vt
    to market; (fig) to commercialize
    * * *
    1) (to try to make (something) a source of profit: Christmas has become commercialized.) commercialize
    2) (to try to make (something) a source of profit: Christmas has become commercialized.) commercialise
    * * *
    ver·mark·ten *
    vt
    etw \vermarkten
    sich akk leicht/schwer \vermarkten lassen to be easy/difficult to market
    2. (verwerten) to capitalize on sth
    * * *
    1) (als Ware verkaufen) exploit commercially
    2) (Wirtsch.) market <goods etc.>
    * * *
    vermarkten v/t (put on the) market; fig capitalize on, exploit (commercially);
    viele Bauern vermarkten ihre Produkte selbst many farmers market their goods themselves (US market their own produce)
    * * *
    1) (als Ware verkaufen) exploit commercially
    2) (Wirtsch.) market <goods etc.>
    * * *
    v.
    to capitalize on v.
    to commercialise (UK) v.
    to commercialize (US) v.
    to exploit (commercially) v.
    to market v.
    to put on the market expr.

    Deutsch-Englisch Wörterbuch > vermarkten

  • 2 vermarkten

    1. to capitalize on
    2. to exploit (commercially)
    3. to market
    4. to put on the market

    Deutsch-Englisches Wörterbuch > vermarkten

  • 3 Biro, Laszlo Joszef (Ladislao José)

    SUBJECT AREA: Paper and printing
    [br]
    b. 29 September 1899 Budapest, Hungary
    d. 24 October 1985 Buenos Aires, Argentina
    [br]
    Hungarian inventor of the ballpoint pen.
    [br]
    Details of Biro's early life are obscure, but by 1939 he had been active as a painter, a member of the Hungarian Academy of Sciences and an inventor, patenting over thirty minor inventions. During the 1930s he edited a cultural magazine and noticed in the printing shop the advantages of quick-drying ink. He began experimenting with crude ballpoint pens. The idea was not new, for an American, John Loud, had patented a cumbersome form of pen for marking rough surfaces in 1888; it had failed commercially. Biro and his brother Georg patented a ballpoint pen in 1938, although they had not yet perfected a suitable ink or a reservoir to hold it.
    In 1940 Biro fled the Nazi occupation of Hungary and settled in Argentina. Two years later, he had developed his pen to the point where he could seek backers for a company to exploit it commercially. His principal backer appears to have been an English accountant, Henry George Martin. In 1944 Martin offered the invention to the US Army Air Force and the British Royal Air Force to overcome the problems aircrews were experiencing at high altitudes with leaking fountain pens. Some 10,000 ballpoints were made for the RAF. Licences were granted in the USA for the manufacture of the "biro", and in 1944 the Miles-Martin Pen Company was formed in Britain and began making them on a large scale at a factory near Reading, Berkshire; by 1951 its workforce had grown to over 1,000. Other companies followed suit; by varying details of the pen, they avoided infringing the original patents. One such entrepreneur, Miles Reynolds, was the first to put the pen on sale to the public in New York; it is reputed that 10,000 were sold on the first day.
    Biro had little taste for commercial exploitation, and by 1947 he had withdrawn from the Argentine company, mainly to resume his painting, in the surrealist style. Examples of his work are exhibited in the Fine Arts Museum in Budapest. He created an instrument that had a greater impact on written communication than any other single invention.
    [br]
    Further Reading
    "Nachruf: Ladislao José Biro (1899–1985)", HistorischeBurowelt (1988) 21:5–8 (with English summary).
    J.Jewkes, The Sources of Invention, pp. 234–5.
    LRD

    Biographical history of technology > Biro, Laszlo Joszef (Ladislao José)

  • 4 Sholes, Christopher Latham

    SUBJECT AREA: Paper and printing
    [br]
    b. 14 February 1819 Mooresburg, Pennsylvania, USA
    d. 17 February 1890 USA
    [br]
    American inventor of the first commercially successful typewriter.
    [br]
    Sholes was born on his parents' farm, of a family that had originally come from England. After leaving school at 14, he was apprenticed for four years to the local newspaper, the Danville Intelligencer. He moved with his parents to Wisconsin, where he followed his trade as journalist and printer, within a year becoming State Printer and taking charge of the House journal of the State Legislature. When he was 20 he left home and joined his brother in Madison, Wisconsin, on the staff of the Wisconsin Enquirer. After marrying, he took the editorship of the Southport Telegraph, until he became Postmaster of Southport. His experiences as journalist and postmaster drew him into politics and, in spite of the delicate nature of his health and personality, he served with credit as State Senator and in the State Assembly. In 1860 he moved to Milwaukee, where he became Editor of the local paper until President Lincoln offered him the post of Collector of Customs at Milwaukee.
    That position at last gave Sholes time to develop his undoubted inventive talents. With a machinist friend, Samuel W.Soule, he obtained a patent for a paging machine and another two years later for a machine for numbering the blank pages of a book serially. At the small machine shop where they worked, there was a third inventor, Carlos Glidden. It was Glidden who suggested to Sholes that, in view of his numbering machine, he would be well equipped to develop a letter printing machine. Glidden drew Sholes's attention to an account of a writing machine that had recently been invented in London by John Pratt, and Sholes was so seized with the idea that he devoted the rest of his life to perfecting the machine. With Glidden and Soule, he took out a patent for a typewriter on June 1868 followed by two further patents for improvements. Sholes struggled unsuccessfully for five years to exploit his invention; his two partners gave up their rights in it and finally, on 1 March 1873, Sholes himself sold his rights to the Remington Arms Company for $12,000. With their mechanical skills and equipment, Remingtons were able to perfect the Sholes typewriter and put it on the market. This, the first commercially successful typewriter, led to a revolution not only in office work, but also in work for women, although progress was slow at first. When the New York Young Women's Christian Association bought six Remingtons in 1881 to begin classes for young women, eight turned up for the first les-son; and five years later it was estimated that there were 60,000 female typists in the USA. Sholes said, "I feel that I have done something for the women who have always had to work so hard. This will more easily enable them to earn a living."
    Sholes continued his work on the typewriter, giving Remingtons the benefit of his results. His last patent was granted in 1878. Never very strong, Sholes became consumptive and spent much of his remaining nine years in the vain pursuit of health.
    [br]
    Bibliography
    23 June 1868, US patent no. 79,265 (the first typewriter patent).
    Further Reading
    M.H.Adler, 1973, The Writing Machine, London: Allen \& Unwin.
    LRD

    Biographical history of technology > Sholes, Christopher Latham

  • 5 использовать в коммерческих целях

    General subject: commercially exploit

    Универсальный русско-английский словарь > использовать в коммерческих целях

  • 6 Cort, Henry

    SUBJECT AREA: Metallurgy
    [br]
    b. 1740 Lancaster, England
    d. 1800 Hampstead, near London, England
    [br]
    English ironmaster, inventor of the puddling process and grooved rollers for forming iron into bars.
    [br]
    His father was a mason and brickmaker but, anxious to improve himself, Cort set up in London in 1765 as a navy agent, said to have been a profitable business. He recognized that, at that time, the conversion of pig iron to malleable or wrought iron, which was needed in increasing quantities as developments in industry and mechanical engineering gathered pace, presented a bottleneck in the ironmaking process. The finery hearth was still in use, slow and inefficient and requiring the scarce charcoal as fuel. To tackle this problem, Cort gave up his business and acquired a furnace and slitting mill at Fontley, near Fareham in Hampshire. In 1784 he patented his puddling process, by which molten pig iron on the bed of a reverberatory furnace was stirred with an iron bar and, by the action of the flame and the oxygen in the air, the carbon in the pig iron was oxidized, leaving nearly pure iron, which could be forged to remove slag. In this type of furnace, the fuel and the molten iron were separated, so that the cheaper coal could be used as fuel. It was the stirring action with the iron bar that gave the name "puddling" to the process. Others had realized the problem and reached a similar solution, notably the brothers Thomas and George Cranage, but only Cort succeeded in developing a commercially viable process. The laborious hammering of the ball of iron thus produced was much reduced by an invention of the previous year, 1783. This too was patented. The iron was passed between grooved rollers to form it into bars. Cort entered into an agreement with Samuel Jellico to set up an ironworks at Gosport to exploit his inventions. Samuel's father Adam, Deputy Paymaster of the Navy, advanced capital for this venture, Cort having expended much of his own resources in the experimental work that preceded his inventions. However, it transpired that Jellico senior had, unknown to Cort, used public money to advance the capital; the Admiralty acted to recover the money and Cort lost heavily, including the benefits from his patents. Rival ironmasters were quick to pillage the patents. In 1790, and again the following year, Cort offered unsuccessfully to work for the military. Finally, in 1794, at the instigation of the Prime Minister, William Pitt the Younger, Cort was paid a pension of £200 per year in recognition of the value of his improvements in the technology of ironmaking, although this was reduced by deductions to £160. After his death, the pension to his widow was halved, while some of his children received a pittance. Without the advances made by Cort, however, the iron trade could not have met the rapidly increasing demand for iron during the industrial revolution.
    [br]
    Bibliography
    1787, A Brief State of Facts Relative to the New Method of Making Bar Iron with Raw Pit Coal and Grooved Rollers (held in the Science Museum Library archive collection).
    Further Reading
    H.W.Dickinson, 1941, "Henry Cort's bicentary", Transactions of the Newcomen Society 21: 31–47 (there are further references to grooved rollers and the puddling process in Vol. 49 of the same periodical (1978), on pp. 153–8).
    R.A.Mott, 1983, Henry Con, the Great Finery Creator of Puddled Iron, Sheffield: Historical Metallurgy Society.
    LRD

    Biographical history of technology > Cort, Henry

  • 7 Lee, Revd William

    SUBJECT AREA: Textiles
    [br]
    d. c. 1615
    [br]
    English inventor of the first knitting machine, called the stocking frame.
    [br]
    It would seem that most of the stories about Lee's invention of the stocking frame cannot be verified by any contemporary evidence, and the first written accounts do not appear until the second half of the seventeenth century. The claim that he was Master of Arts from St John's College, Cambridge, was first made in 1607 but cannot be checked because the records have not survived. The date for the invention of the knitting machine as being 1589 was made at the same time, but again there is no supporting evidence. There is no evidence that Lee was Vicar of Calverton, nor that he was in Holy Orders at all. Likewise there is no evidence for the existence of the woman, whether she was girlfriend, fiancée or wife, who is said to have inspired the invention, and claims regarding the involvement of Queen Elizabeth I and her refusal to grant a patent because the stockings were wool and not silk are also without contemporary foundation. Yet the first known reference shows that Lee was the inventor of the knitting machine, for the partnership agreement between him and George Brooke dated 6 June 1600 states that "William Lee hath invented a very speedy manner of making works usually wrought by knitting needles as stockings, waistcoats and such like". This agreement was to last for twenty-two years, but terminated prematurely when Brooke was executed for high treason in 1603. Lee continued to try and exploit his invention, for in 1605 he described himself as "Master of Arts" when he petitioned the Court of Aldermen of the City of London as the first inventor of an engine to make silk stockings. In 1609 the Weavers' Company of London recorded Lee as "a weaver of silk stockings by engine". These petitions suggest that he was having difficulty in establishing his invention, which may be why in 1612 there is a record of him in Rouen, France, where he hoped to have better fortune. If he had been invited there by Henry IV, his hopes were dashed by the assassination of the king soon afterwards. He was to supply four knitting machines, and there is further evidence that he was in France in 1615, but it is thought that he died in that country soon afterwards.
    The machine Lee invented was probably the most complex of its day, partly because the need to use silk meant that the needles were very fine. Henson (1970) in 1831 took five pages in his book to describe knitting on a stocking frame which had over 2,066 pieces. To knit a row of stitches took eleven separate stages, and great care and watchfulness were required to ensure that all the loops were equal and regular. This shows how complex the machines were and points to Lee's great achievement in actually making one. The basic principles of its operation remained unaltered throughout its extraordinarily long life, and a few still remained in use commercially in the early 1990s.
    [br]
    Further Reading
    J.T.Millington and S.D.Chapman (eds), 1989, Four Centuries of Machine Knitting, Commemorating William Lee's Invention of the Stocking Frame in 1589, Leicester (N.Harte examines the surviving evidence for the life of William Lee and this must be considered as the most up-to-date biographical information).
    Dictionary of National Biography (this contains only the old stories).
    Earlier important books covering Lee's life and invention are G.Henson, 1970, History of the Framework Knitters, reprint, Newton Abbot (orig. pub. 1831); and W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867).
    M.Palmer, 1984, Framework Knitting, Aylesbury (a simple account of the mechanism of the stocking frame).
    R.L.Hills, "William Lee and his knitting machine", Journal of the Textile Institute 80(2) (a more detailed account).
    M.Grass and A.Grass, 1967, Stockings for a Queen. The Life of William Lee, the Elizabethan Inventor, London.
    RLH

    Biographical history of technology > Lee, Revd William

  • 8 Thomson, Elihu

    SUBJECT AREA: Electricity
    [br]
    b. 29 March 1853 Manchester, England
    d. 13 March 1937 Swampscott, Massachusetts, USA
    [br]
    English (naturalized) American electrical engineer and inventor.
    [br]
    Thomson accompanied his parents to Philadelphia in 1858; he received his education at the Central High School there, and afterwards remained as a teacher of chemistry. At this time he constructed several dynamos after studying their design, and was invited by the Franklin Institute to give lectures on the subject. After observing an arc-lighting system operating commercially in Paris in 1878, he collaborated with Edwin J. Houston, a senior colleague at the Central High School, in working out the details of such a system. An automatic regulating device was designed which, by altering the position of the brushes on the dynamo commutator, maintained a constant current irrespective of the number of lamps in use. To overcome the problem of commutation at the high voltages necessary to operate up to forty arc lamps in a series circuit, Thomson contrived a centrifugal blower which suppressed sparking. The resulting system was efficient and reliable with low operating costs. Thomson's invention of the motor meter in 1882 was the first of many such instruments for the measurement of electrical energy. In 1886 he invented electric resistance welding using low-voltage alternating current derived from a transformer of his own design. Thomson's work is recorded in his technical papers and in the 700plus patents granted for his inventions.
    The American Electric Company, founded to exploit the Thomson patents, later became the Thomson-Houston Company, which was destined to be a leader in the electrical manufacturing industry. They entered the field of electric power in 1887, supplying railway equipment and becoming a major innovator of electric railways. Thomson-Houston and Edison General Electric were consolidated to form General Electric in 1892. Thomson remained associated with this company throughout his career.
    [br]
    Principal Honours and Distinctions
    Chevalier and Officier de la Légion d'honneur 1889. American Academy of Arts and Sciences Rumford Medal 1901. American Institute of Electrical Engineers Edison Medal 1909. Royal Society Hughes Medal 1916. Institution of Electrical Engineers Kelvin Medal 1923, Faraday Medal 1927.
    Bibliography
    1934, "Some highlights of electrical history", Electrical Engineering 53:758–67 (autobiography).
    Further Reading
    D.O.Woodbury, 1944, Beloved Scientist, New York (a full biography). H.C.Passer, 1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass, (describes Thomson's industrial contribution).
    K.T.Compton, 1940, Biographical Memoirs of Elihu Thomson, Washington, DCovides an abridged list of Thomson's papers and patents).
    GW

    Biographical history of technology > Thomson, Elihu

См. также в других словарях:

  • exploit — ex‧ploit [ɪkˈsplɔɪt] verb [transitive] 1. to use something fully and effectively in order to gain a profit or advantage: • New TV companies are fully exploiting the potential of satellite transmission. • the ways in which natural resources are… …   Financial and business terms

  • exploit — {{Roman}}I.{{/Roman}} noun ADJECTIVE ▪ daring, heroic ▪ legendary ▪ His courage and exploits were legendary. ▪ wartime ▪ military …   Collocations dictionary

  • commercially — adv. Commercially is used with these adjectives: ↑acceptable, ↑available, ↑confidential, ↑feasible, ↑justifiable, ↑sensitive, ↑successful, ↑valuable, ↑viable Commercially is used with these verbs: ↑bree …   Collocations dictionary

  • Nesstar — is a Semantic Web application for statistical data and metadata that aims to streamline the process of finding, accessing and analysing statistical information. The social sciences are big producers and consumers of statistical data. Surveys,… …   Wikipedia

  • Bélmez Faces — The Bélmez Faces or the Faces of Bélmez is considered by some parapsychologists the best documented and without doubt the most important paranormal phenomenon [in the 20th] century . [ [http://www.discoverychannel.com.au/paranormal/most… …   Wikipedia

  • 12 basic principles of animation — The 12 basic principles of animation is a set of principles of animation introduced by the Disney animators Ollie Johnston and Frank Thomas in their 1981 book .Ref label|A|a|nonecite book|last=Thomas|first=Frank|coauthors=Ollie Johnston|title=The …   Wikipedia

  • exploitable — exploit UK US /ɪkˈsplɔɪt/ verb [T] ► to use or develop something for profit or progress in business: exploit resources/technology/information »We need to make sure that we exploit our resources as fully as possible. »exploit… …   Financial and business terms

  • Life Sciences — ▪ 2009 Introduction Zoology       In 2008 several zoological studies provided new insights into how species life history traits (such as the timing of reproduction or the length of life of adult individuals) are derived in part as responses to… …   Universalium

  • Business and Industry Review — ▪ 1999 Introduction Overview        Annual Average Rates of Growth of Manufacturing Output, 1980 97, Table Pattern of Output, 1994 97, Table Index Numbers of Production, Employment, and Productivity in Manufacturing Industries, Table (For Annual… …   Universalium

  • motion picture, history of the — Introduction       history of the medium from the 19th century to the present. Early years, 1830–1910 Origins       The illusion of motion pictures is based on the optical phenomena known as persistence of vision and the phi phenomenon. The first …   Universalium

  • western Africa, history of — Introduction       history of the region from the 11th century to the present.       A reasonable body of sources for the writing of western African history begins to be available about AD 1000. Three centuries earlier, the Arabs (Arab) had… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»